Delivery: Can be download immediately after purchasing. For new customer, we need process for verification from 30 mins to 12 hours.
Version: PDF/EPUB. If you need EPUB and MOBI Version, please send contact us.
Compatible Devices: Can be read on any devices
This up-to-date introduction to Griffiths’ theory of period maps and period domains focusses on algebraic, group-theoretic and differential geometric aspects. Starting with an explanation of Griffiths’ basic theory, the authors go on to introduce spectral sequences and Koszul complexes that are used to derive results about cycles on higher-dimensional algebraic varieties such as the Noether–Lefschetz theorem and Nori’s theorem. They explain differential geometric methods, leading up to proofs of Arakelov-type theorems, the theorem of the fixed part and the rigidity theorem. They also use Higgs bundles and harmonic maps to prove the striking result that not all compact quotients of period domains are Kähler. This thoroughly revised second edition includes a new third part covering important recent developments, in which the group-theoretic approach to Hodge structures is explained, leading to Mumford–Tate groups and their associated domains, the Mumford–Tate varieties and generalizations of Shimura varieties.
This is a digital product.
Period Mappings and Period Domains 2nd Edition is written by James Carlson; Stefan Müller-Stach; Chris Peters and published by Cambridge University Press. The Digital and eTextbook ISBNs for Period Mappings and Period Domains are 9781108118989, 1108118984 and the print ISBNs are 9781108422628, 1108422624.
Reviews
There are no reviews yet.